Interest Prediction on Multinomial, Time-Evolving Social Graph
نویسندگان
چکیده
We propose a method to predict users’ interests in social media, using time-evolving, multinomial relational data. We exploit various actions performed by users, and their preferences to predict user interests. Actions performed by users in social media such as Twitter, Delicious and Facebook have two fundamental properties. (a) User actions can be represented as high-dimensional or multinomial relations e.g. referring URLs, bookmarking and tagging, clicking a favorite button on a post etc. (b) User actions are time-varying and user-specific – each user has unique preferences that change over time. Consequently, it is appropriate to represent each user’s action at some point in time as a multinomial relational data. We propose ActionGraph, a novel graph representation for modeling users’ multinomial, time-varying actions. Each user’s action at some time point is represented by an action node. ActionGraph is a bipartite graph whose edges connect an action node to its involving entities, referred to as object nodes. Using realworld social media data, we empirically justify the proposed graph structure. Our experimental results show that the proposed ActionGraph improves the accuracy in a user interest prediction task by outperforming several baselines including standard tensor analysis, a previously proposed state-of-theart LDA-based method and other graph-based variants. Moreover, the proposed method shows robust performances in the presence of sparse data.
منابع مشابه
Exploiting User Interest on Social Media for Aggregating Diverse Data and Predicting Interest
More and more users have been taking various actions to diverse resources referred to by URLs such as news, web pages, images, products, movies as a result of the growth of social media. They are annotating, tweeting in Twitter, reblogging in Tumblr, and Liking in Facebook, etc. Analyses about these diverse actions will be useful for aggregating or integrating diverse resources. In this paper, ...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملVisualizing and Interacting with Time-Evolving Graphs
Large, time-evolving graphs can be directly and indirectly observed in a variety of phenomena across domains. Specically, for following the evolution of communities over time, applications can range from tracking modules in protein-protein interaction networks [10] to groups in scientic co-authorship networks [3]. Other tasks may include anomaly detection and graph matching across graph snaps...
متن کاملMultinomial Relation Prediction in Social Data: A Dimension Reduction Approach
The recent popularization of social web services has made them one of the primary uses of the World Wide Web. An important concept in social web services is social actions such as making connections and communicating with others and adding annotations to web resources. Predicting social actions would improve many fundamental web applications, such as recommendations and web searches. One remark...
متن کاملOntology-Aware Classification and Association Rule Mining for Interest and Link Prediction in Social Networks
Previous work on analysis of friendship networks has identified ways in which graph features can be used for prediction of link existence and persistence, and shown that features of user pairs such as shared interests can marginally improve the precision and recall of link prediction. This marginal improvement has, to date, been severely limited by the flat representation used for interest taxo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011